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The robustness and reliability of scale-free networks are tested as a fuse network. The idea is to examine the
robustness of a scale-free network when links are irreversibly removed after failing. Due to inherent charac-
teristics of the fuse network model, the sequence of links removal is deterministic and conditioned to fuse
tolerance and connectivity of its ends. It is a different situation from classical robustness analysis of complex
networks, when they are usually tested under random fails and deliberate attacks of nodes. The use of this
system to study the fracture of elastic material brought some interesting results.
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I. INTRODUCTION

Material science and engineering have always been con-
cerned with robustness and durability of materials where a
trade off involving energy consumption, costs, and mechani-
cal reliability is to be optimized. The damage and fracture of
materials always involve economic and human costs. Crack-
ing of glass, corrosion of metallic structures and tools, the
aging of concrete, and the failure of fiber networks are just a
few of many everyday stressing situations leading to material
failure.

Different classes of materials have different mechanical
and thermal properties. Ceramics are incredibly rigid and
thermally resistant, but their failure is catastrophic for their
lack of plasticity. Metals are much softer than ceramics, but
have thermal restrictions and are way too heavy for certain
uses. Weight is not usually a problem with polymers, but
excessive creep under heat and degradation under ultraviolet
radiation often limit their usage. In that scenario, composites
may arise as a solution, combining the best of two materials.
The idea is not new. Wood itself is a fibrous composite:
cellulose fibers in a lignin matrix. The cellulose fibers have
high tensile strength but are very flexible �i.e., low stiffness�,
while the lignin join the fibers and furnishes the stiffness.
Rocks, concrete, Portland cement are all successful examples
of composite materials �1�.

So it seems to be a fact that inhomogeneity in materials is
in many cases desirable. That leads to the problems concern-
ing structures characterized by the lack of conventional geo-
metrical order. Actually, several statistical models for the
fracture of disordered media have been proposed and ex-
plored in the last few decades �see �2� for a good review�.
One of them is the random fuse network �3–8�, described
below, that makes use of the similarity between Hook’s law
and Ohm’s law, trying to apprehend the role of heterogeneity
at a mesoscopic level taking to macroscopic failure in elastic
materials. The network itself is regular, usually square, the
disorder is introduced via dilution �a certain fraction of the
fuses is removed� and/or attributing different characteristics

to each fuse. In the present work, the disorder is introduced
by using a irregular geometry for the network. Not a random
network, but a scale free network �SFN�.

SFN’s have been found to lie behind the structure of many
natural and artificially created networks �9�: www �10,11�,
internet routers �12�, proteins �13�, and scientific collabora-
tions �14�, just to name a few. The main features that distin-
guish these complex networks from “ordinary” ones are their
small-world character �15� and the scale-free degree distri-
bution �16�.

The original model to create SFN’s was proposed by Al-
bert and Barabasi �17� and was based on growth and prefer-
ential attachment. At each time step a new node is added to
the network and attaches itself to m already existing nodes
with probability proportional to their incidence degrees. With
this simple recipe, a scale-free network with degree distribu-
tion of exponent 3 is obtained. Some changes and new mod-
els have also been proposed, allowing a control of the char-
acteristic exponent and catching different dynamics for
growth and even competition between the nodes of the
network �18�.

Given the abundant examples of complex networks in na-
ture, the problem of attacks on complex networks has at-
tracted a lot of attention recently �19–22�. It has been ob-
served that scale-free networks display an exceptional
robustness against random node failure, but show poor per-
formance against preferential node removal �the most con-
nected nodes are preferentially removed�.

The robustness of SFN’s has also been evaluated using
the fiber bundle model �2� as a scenario �23,24�. The nodes
were fibers that broke when the load imposed was greater
than their individual threshold. But, again, the nodes �fibers�
were the entities to be removed. As in the case of the reli-
ability evaluation of power transmission systems �25–27�,
the present work strives to evaluate the robustness of net-
works when the links, and not the nodes, are subjected to
overload. Power systems, however, are not scale-free net-
works. And, as far as the authors know, this is the first time
scale-free networks have their robustness tested under deter-
ministic link failure. If the system is also thought to mimic a
fiber reinforced material, it makes a lot more sense thinking
of fibers as links instead of nodes, for it is hard to imagine
that a single fiber could locally share its load with as many
fibers as a hub in a SFN.
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II. MODEL

In the classical random fuse network model, fuses are
placed at random on the bonds of a d-dimensional hypercu-
bic lattice. Figure 1 shows the two-dimensional case. Two
busbars are placed across the top and the bottom rows of the
network and a voltage difference V is applied between the
two bars. The external voltage made sufficiently large will
burn a fuse or a few of them and eventually take the system
to a complete rupture or breakdown, when no current flows.

The fuses may be identical, i.e. have identical conductiv-
ity gj and identical tolerance icj, in which case the disorder is
introduced by diluting the links in the network, respecting
the percolation limit, as in Fig. 1�a�.

A different array may be set with a regular square net-
work, as in Fig. 1�b�. In that case, disorder comes with a
statistical distribution of fuse characteristics �conductivity
and/or tolerance�.

In the present work, the disorder element is simply the
network topology, for SFN’s are marked by a power-law de-
gree distribution and short characteristic length �9,28,29�.
The possibilities concerning the connectivities of both termi-
nals of each fuse are unlimited �actually it is limited by the
maximum connectivity, which, by its turn, is only limited by
the size of the network�.

The fuse network in square lattices clearly establishes two
sets of nodes that are connected to the source terminals via
two bus bars, usually the top and the bottom rows of nodes.
For a complex network, however, this matter is not clear.
What is proposed here is starting from an intuitive notion of
peripheral and central regions in the network; we will study
three different cases of loading.

The peripheral region is now declared to be the set of all
nodes with connectivity k=m. These are the nodes that were

never connected after being added to the network. They cor-
respond to the nodes with the lowest connectivity in the net-
work and, most likely, the last nodes added to it.

On the opposite hand, the the central node is defined as
the most connected one.

Based on these definitions, three different loading cases
are studied:

�1� One terminal of the voltage source is connected to the
central node and the other terminal, to the peripheral nodes.

�2� The peripheral region is divided into two sets with the
same number of nodes �or differing by one� and each set is
connected to a terminal of the voltage source.

�3� A few randomly chosen nonperipheral nodes are con-
nected to one terminal of the voltage source and the periph-
eral region is connected to the other terminal.

The peripheral nodes are actually merged into a single
node, in cases �1� and �3�, or two nodes, in case �2�. These
are sometimes referred as the periphery terminal or the pe-
riphery along the text.

III. METHODS

To deal with the terrifying problem of analyzing the com-
plex circuit created by a scale-free network it was made
broad use of graph theory. The analogy between an electric
circuit and a directed graph with across and through vari-
ables is complete �30�. Kirchhoff’s current and voltage laws
are general postulates regarding incidence and circuit prop-
erties of directed graphs.

The fuse network circuit can be mapped onto a directed
graph, where each link corresponds to a circuit element �a
resistor or a voltage source� and the nodes simply correspond
to circuit nodes. Each link is attributed a conductivity value
Gj and has two variables: the current �through� ij and the
voltage �across� v j. Kirchhoff’s current law is simply stated
as

Ai = 0 �1�

where A is the reduced incidence matrix of the oriented
graph representing the network.

A typical element of a resistive network �30� is shown in
Fig. 2.

The subscript j indicates the jth element of the network
and the subscript s indicates a generator or source. From
Fig. 2, it follows

FIG. 2. A typical resistive network element. If it is a voltage
source, is,j is zero; if it is a current source, vs,j is zero; if it is a fuse
both is,j and vs,j are zero.

FIG. 1. Two-dimensional square fuse network. �a� Diluted. �b�
Regular network.
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ij = Gjv j + is,j − Gjvs,j, j = 1,2, . . . ,e . �2�

e being the number of elements in the circuit or arcs in the
graph. The set of equations �2� may be written in the vector
form

i = Gv + is − Gvs, �3�

where the conductivity matrix G is a diagonal matrix with
each element Gjj corresponding to the conductivity of the jth
circuit element.

The node analysis of the network, corresponding to
Kirchhoff’s current law Eq. �1�, can now be expressed by

AGv + Ais − AGvs = 0 . �4�

Now, if vn denotes the nodes voltages relative to a chosen
datum node, the vector v of voltages across each element
may be written as

v = Atvn. �5�

Using �5� in �4� and considering that our circuit is only fed
by a voltage source �is=0�, it comes

AGAtvn = AGvs. �6�

Defining the node admittance matrix Y=AGAt, the net-
work node analysis results in the expression

Yvn = in �7�

where in=AGvs.
Since Y is invertible, vn can be found by means of Eq.

�7�. Equation �5� will then give v and Eq. �3� will finally
provide i, the vector of currents through each element.

Once created the scale-free network, each one of its e
links is made a fuse, all having the same conductivity Gj
=1 and the same tolerance ic,j =1. An external voltage vs
=1 is then applied to this network, adding an extra element
to the network. The vector vs, corresponding to the voltage
sources, has only one nonzero element, that is its �e+1�th

entry. In order to have Y invertible, the external voltage
source has to be nonideal and its conductivity is also made
unitary.

The test procedure for a single network begins with the
inversion of Y to obtain vn, v and finally i, by means of Eqs.
�7�, �5�, and �3�. The external voltage vs is always set to 1,
but the real voltage at the terminals of the voltage source is
ve+1=vs−Ge+1ie+1=vs− ie+1 �recalling that the index e+1 de-
notes the extra element added, that is, the voltage source�.

The hottest fuse is the one with the maximum ratio �
= ij / ic,j, from now on, called �max. So, the external �real�
voltage to burn the hottest fuse is V=ve+1 /�max, and the total
current I= ie+1 /�max. The burning of a fuse means it is irre-
versibly removed from the network. The currents are recal-
culated and again the hottest fuse is removed for a new value
of V and I, which will define a sequence �Vm , Im�, with m
ranging from 1 to the last burning of a fuse, corresponding to
the network breaking apart and no more current being con-
duced through it.

After the mth fuse connecting node r to node s is burnt
and removed from the network, the new admittance matrix Y
will be given by

Ym+1 = Ym − Grswwt

where w is a vector whose elements are given by

FIG. 3. Typical picture at final failure of network in loading case
1. Heavy lines are the burnt fuses. The central node is at the top
marked by a large arrow departing from it. The periphery terminal
is on the right, marked by a large arrow. The network is made small
only for visualization purposes.

FIG. 4. I-V curve for load mode 1 for a network of 1000 nodes
and 3000 fuses. �a� A single sample, with arrows showing the val-
ues of V and I for the burning sequence. �b� Average over 100
networks.
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wr = 1

ws = − 1

wj = 0, for j � r and j � s .

and Grs is the conductance of the fuse that connects node r to
node s. Significant computational advantages can be gained
if the inverse of Ym is simply updated by the well-known
Shermon-Morrison-Woodbury formula. �31,32�

Ym+1
−1 = Ym

−1 + � frs
uut

�1 − Grsw
tu��

where

u = Ym
−1w .

The whole process is carried out using Scilab, the scien-
tific software package, which has built-in graph tools.

IV. RESULTS AND DISCUSSION

A. Load mode 1

Load mode 1, as described earlier, refers to a central con-
fluence of load, meaning that the links incident to this central
load are the most likely to be overloaded. Figure 3 confirms
that. It shows a small network at the end of simulation, when
no more current is flowing because the system has broken
down.

This is the typical result; all links incident to the central
node failed. Sometimes an extra link would break, as in this
case �the one at the very bottom�.

The plot of current vs voltage for this load mode is shown
in Fig. 4. L, in I /L and V /L, is the number of nodes, set to
1000 in all simulations in this section.

The profile seen in Fig. 4�b� resembles the stress-strain
curve of a elastic material reinforced with fibers made of a
tougher elastic material �like carbon fiber reinforced glass �2�
and carbon fiber in carbonaceous matrix �1��—the fibers pre-
venting the catastrophic one-crack failure.

B. Load mode 2

This mode, described earlier, would suggest escaping the
total confluence toward the central node as seen in case 1.
Nevertheless the rupture will be defined in one of the periph-
eral neighborhoods, as can be seen in Fig. 5.

Any imbalance between the two peripheral halves will
trigger an avalanche in one of the “sides.”

Figure 6 shows the behavior of the I vs V curve during the

FIG. 5. Typical picture at final failure of network in loading case
2. Heavy lines are the burnt fuses. C indicates the central node; P1
and P2 are the two halves of the peripheral region. The network is
made small for easier visualization.

FIG. 6. I-V curve for load mode 2 for a network of 1000 nodes
and 3000 fuses. �a� A single sample, with arrows showing the val-
ues of V and I for the burning sequence. �b� Average over 100
networks. �c� Voltage controlled test: same as �b�, but allowing only
increasing values of V.
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burning sequence for this case. In Fig. 6�a� it is possible to
see significant oscillations observed for a single network.
The arrows explicit the burning sequence. When averaged
over 100 samples, the oscillations are significantly smoothed,
as shown in Fig. 6�b�.

If a voltage controlled test is considered, where V is made
to increase monotonically and never decrease, the curve ob-
tained is the one shown in Fig. 6�c�. The mechanical corre-
spondent would be the strain controlled test. It shows, in this
case, a smooth transition not observed in either two other
load cases. Mechanically it would represent fiber bridging,
after matrix extensive microcracking, followed by fiber
bundle failure �1,33�.

C. Load mode 3

Another situation is described by case 3, also described
earlier. Here the confluence toward the central node is re-
lieved by setting a small fraction ��1% � of nodes to divide
the flow toward the ”central” terminal -as the one opposed to
the periphery. The result is a spread of burned fuses as can be
seen in Fig. 7.

The plot of current versus voltage in this case shows an
interesting oscillation as can be seen in Fig. 8�a� and 8�b�.
For a single sample, it is interesting to note that after the first
burn of a fuse, the three next fuses will burn in a decreasing
sequence of overall tolerance �lower currents� of the net-
work. Next, a significant raise in tolerance is seen, to be
followed again by a decreasing sequence.

Along each lowering tolerance sequence, the overall con-
ductivity of the network seems to remain nearly unchanged,
since the values of I and V, in the sequence, lie on a straight
line that intercepts the V axis next to the origin.

Averaging over 100 samples, I vs V curve still displays
strong oscillations �Fig. 8�b��. When the voltage controlled
test is considered, with monotonically increasing V, the
curve obtained is the one shown in Fig. 8�c�.

V. CONCLUSIONS

The inherent inhomogeneity of scale-free networks has
shown interesting consequences to the robustness of systems

described by this kind of networks when their links are under
load and subject to deterministic failure. Their characteristic
distribution of incidence degrees has proved to be a major
disorder element, with no need of further inhomogeneity dis-
tributions such as different load thresholds or different load
response for the links.

Three different load modes have given place to three dis-
tinct breaking profiles. The distinctions were clear in both the
load concentration geometry and overall load responses.

FIG. 7. Typical picture at final failure of network in loading case
3. Heavy lines are the burnt fuses. C indicates the central node �the
most connected one�. P denotes the periphery and R is the terminal
connected to the randomly chosen nodes. The network is made
small for easier visualization.

FIG. 8. I-V curve for load mode 3 for a network of 1000 nodes
and 3000 fuses. �a� A single sample, with arrows showing the val-
ues of V and I for the burning sequence. �b� Average over 100
networks. �c� Voltage controlled test: same as �b�, but allowing only
increasing values of V.
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Larger scale tests with networks as large as 104 nodes and
3�104 links confirmed the load response profiles.

Although the fuse network may not be a direct mechani-
cal model for the fracture problem it does seem to capture
essential aspects of fracture in disordered media. Two of
three modes shown here display load responses profiles with
clear correspondence in fiber reinforced materials cases. That
could suggest how internal stress fields in matrix and load
share between fibers actually interact.
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